Monetary theory ECON 0231, University of Brussels, 2005 #### Michel BEINE mbeine@ulb.ac.be Université Libre de Bruxelles, Belgique. http://homepages.ulb.ac.be/~mbeine #### Inroduction - We need to explain the empirical evidence exposed in chapter 1: MP influences prices and output in the short (medium) run but at least for output not in the long run. - We are going to tackle the impact of MP in a extended IS-LM type of model - Why extension is needed: IS-LM is a model for the short run: fixed prices, no adjustment of aggregate supply, no revision of expectations, ... - 2 important features of the model . - explicit treatment of agents' expectations. - Model consistent with optimizing schemes: derived from microeconomic behavior which is not explicitly treated here (see Walsh, 5.1 through 5.3). #### **Basic assumptions** - No physical capital in the model : physical capital does not move → consistent with short-run analysis. - No trade-off between consumption and leisure : inelastic labor supply. - Nominal wage rigid during one period: consistent with staggered contracts; nominal wages are fixed during some time and revised only after the end of the first period. ## 4 Fundamental equations - Aggregate Supply - Aggregate Demand - Money Demand - Fisher Equation ## **Aggregate Supply** - $y_t = E_{t-1}y_t + a(p_t E_{t-1}p_t) + \epsilon_t$ - positive slope a > 0 through the price surprise term : based on the standard equilibrium condition: marginal labor productivity equal to real wage. - With staggered contracts : $w_t^c = E_{t-1}p_t + E_{t-1}y_t E_{t-1}n_t$ → price innovations (price surprises) decrease ex-post real wage → increase output. ## **Aggregate Demand** - $y_t = E_t y_{t+1} r_t + u_t$ - How to explain the presence of $E_t y_{t+1}$? Because optimizing agents. - Intertemporal optimisation between future consumption and interest rates : $y_t = E_t c_{t+1} r_t = E_t y_{t+1} r_t + u_t$ - u_t : real demand shock ## **Money Demand** - Money demand depends on output and interest rate - In this model, the CB has a direct control on money supply. - ν_t : money demand shock. ## **Fisher equation** - \bullet $i_t = r_t + E_t p_{t+1} p_t = r_t + E_t \pi_{t+1}$ - nominal interest rate given by real interest rate and inflation expectations. #### Full model $$y_t = E_{t-1}y_t + a(p_t - E_{t-1}p_t) + \epsilon_t.$$ (1) $$y_t = E_t y_{t+1} - r_t + u_t. (2)$$ $$m_t - p_t = y_t - d_2^{-1}i_t + \nu_t. (3)$$ $$i_t = r_t + E_t p_{t+1} - p_t = r_t + E_t \pi_{t+1}.$$ (4) #### Comparison with other models - Wrt IS-LM-AS: the same type of structure but here $E_t y_{t+1}$ in AD: we use the intertemporal optimisation to choose consumption. - Wrt models in chapter 3: $d_2 = \infty$: elasticity of money demand wrt interest rates zero; here interest rates play a role. - key property of the model : an expected increase of money supply will be incorporated in $E_{t-1}p_t \rightarrow$ no supply side effects. - ullet assume that there is an anticipated increase in money supply m_t . - in this case , no impact on $p_t E_{t-1}p_t$, no impact on y_t , no impact on r_t . $$p_t - E_{t-1}p_t = 0 \Leftrightarrow$$ $$\Rightarrow r_t = -\epsilon_t + u_t \Leftrightarrow$$ $$p_t = \frac{m_t + \phi(E_t p_{t+1}) - \phi_t}{(1+\phi)}$$ $$E_{t}m_{t+1} + \phi(E_{t+1}p_{t+2}) - \underbrace{E_{t}\phi_{t+1}}_{0}$$ $$E_{t}p_{t+1} = \frac{1}{(1+\phi)} + \frac{\phi}{(1+\phi)}E_{t}m_{t+1} + \frac{\phi}{(1+\phi)}E_{t+1}p_{t+2}$$ $$-\frac{1}{(1+\phi)}\phi_{t}$$ $$\Leftrightarrow p_{t} = \frac{1}{(1+\phi)}\sum_{i=0}^{\infty} (\frac{\phi}{1+\phi})^{i}E_{t}m_{t+i} - \frac{1}{(1+\phi)}\phi_{t}$$ - we see that the price level today depends on the expected flow of future values of the money stock. - crucial role of expectations . \rightarrow asymmetric effects of MP depend on whether the increase in m_t is expected or not. #### temporary and anticipated MP - What if increase in m_t is anticipated and temporary ($\rightarrow i = 0$)? - p_t increases by $\frac{1}{(1+\phi)}E_t\triangle m_t$ - p_t increases proportionally to $E_t p_{t+1}$ - $m_t p_t$ increases : one can also see that from Fisher equation : with r_t unchanged, i_t decreases to account for the change in expected inflation \rightarrow increase in demand for real balances ## permanent and anticipated MP - What if increase in m_t is anticipated and permanent ($\rightarrow i = 0, ..., \infty$)? - p_t increases by $\frac{1}{(1+\phi)}\sum_{i=0}^{\infty}(\frac{\phi}{1+\phi})^iE_t\triangle m_t$ - p_t jumps in proportion to $\triangle m_t$ - no impact on real balances $m_t p_t$, on i_t and on expected inflation. #### temporary and not fully anticipated - What if increase in m_t is not fully anticipated and (temporary)? - note: unanticipated and permanent change does not make sense since agents are supposed to be rational. - p_t increases more than $E_t p_{t-1}$. - ullet price surprises will affect y_t through supply side effects. - ullet i_t has to decrease to restore equilibrium in the money market. - since i_t decreases and in general expected inflation does not decrease, r_t also decreases. - in turn, real demand will increase → matches the increases of the aggregate supply. ## Solutions of price and output - idea: finding analytical solutions of price and output to see (in another way) the influence of monetary policy. - Combining (2)-(3)-(4) to find an expression of aggregate demand. - Combining this expression with aggregate supply to have a full equilibrium. ## Aggregate demand-output Combining (3) and (4) leads to $$m_t - p_t = y_t - \phi(r_t + E_t \pi_{t+1}) + \nu_t.$$ - using (2): $r_t = E_t y_{t+1} y_t + u_t$. - $\Rightarrow y_t + \phi y_t = m_t p_t + \phi E_t y_{t+1} + \phi E_t \pi_{t+1} + \phi u_t + \nu_t$ - $\Rightarrow y_t = \frac{d_2(m_t p_t) + E_t y_{t+1} + E_t \pi_{t+1} + u_t d_2 \nu_t}{1 + d_2}$ - We have a standard aggregate demand equation with negative relationship between y_t and p_t . - with m_t affecting aggregate demand. - inflation expectations affect y_t . ## Aggregate demand-price - We need to find the equilibrium of AD and AS and find the equilibrium price level. - AS=AD $$E_{t-1}y_t + ap_t - aE_{t-1}p_t + \epsilon_t = E_t y_{t+1} - r_t + u_t$$ lacksquare $$p_t = \frac{d_2 m_t + a(1 + d_2) E_{t-1} p_{t-1} + E_t \pi_{t+1} + u_t}{d_2 + a(1 + d_2)}$$ $$\frac{-d_2\nu_t - (1+d_2)\epsilon_t}{d_2 + a(1+d_2)}.$$ We need to get rid of $E_{t-1}p_t$ and express everything in terms of $p_t - E_{t-1}p_t$ because this term plays a crucial role for explaining y_t . #### Equilibrium $$p_t - E_{t-1}p_t = \frac{d_2(m_t - E_{t-1}m_t) + (E_t\pi_{t+1} - E_{t-1}\pi_{t+1})}{d_2 + a(1+d_2)} +$$ $$\frac{u_t - d_2\nu_t - (1 + d_2)\epsilon_t}{d_2 + a(1 + d_2)}.$$ • we can substitute this surprise term into the AS equation to get the equilibrium value of y_t consistent with both the supply and the demand $$y_t = \frac{a[d_2(m_t - E_{t-1}m_t) + (E_t\pi_{t+1} - E_{t-1}\pi_{t+1})]}{d_2 + a(1+d_2)} +$$ $$\frac{a[u_t - d_2\nu_t - (1+d_2)\epsilon_t]}{d_2 + a(1+d_2)}.$$ #### **Comments** - This confirms that an unanticipated increase of m_t increases y_t . - On the supply side, $p_t E_{t-1}p_t > 0$ decreases real wages \rightarrow employment increases along with output. - On the demand side, r_t decreases; i_t also decreases since $E_{t+1}p_{t+1} p_t$ decreases and $m_t p_t$ increases. #### Treatment of $E_t \pi_{t+1}$ - Up to now, we have assumed that $E_t\pi_{t+1}$ does not change as a result of an increase in $m_t\to {\rm strong}$ assumption. - what if $(m_t E_{t-1}m_t)$ and $E_t\pi_{t+1}$ both increase ? - we see from the surprise equation that $p_t E_{t-1}p_t$ will increase more \rightarrow the impact on y_t will be more important. - we see also that the increase in $m_t p_t$ will be less important. Why? The increase in $E_t \pi_{t+1}$ will induce a less important decrease in i_t (see Fisher equation). #### Treatment of $E_t \pi_{t+1}$ - Let us express $E_t \pi_{t+1}$ as $E_t p_{t+1} p_t$. - we obtain : $$p_t = \frac{d_2 m_t + E_t p_{t+1} + a(1+d_2) E_{t-1} p_t}{(1+a)(1+d_2)} + \frac{u_t - d_2 \nu_t - (1+d_2) \epsilon_t}{(1+a)(1+d_2)}.$$ - We see that since p_t depends on m_t , $E_{t-1}p_t$ depends on $E_{t-1}m_t$, and E_tp_{t+1} depends on $E_tm_{t+1} \to \text{we}$ need to see how expectations of m_t are built. - To this aim, we are going to assume a particular process of money supply that the agents can use to build their expectations. #### Money supply process ullet assume the following process for m_t : $$m_t = \mu + m_{t-1} + a_1 u_t + a_2 \epsilon_t + a_3 \nu_t + \omega_t.$$ - μ : average growth rate of m_t . - ω_t : control error of the central bank : the CB does not control perfectly the monetary creation process. - a_1, a_2, a_3 : coefficients of reaction to supply shocks, demand shocks and money demand shocks. - use that to compute $E_{t-1}m_t$ and hence $E_{t-1}p_t$. ## Solution (not explained) $$p_t = \frac{\mu(1+d_2)}{d_2} + m_{t-1} + b_1 u_t + b_2 \epsilon_t + b_3 \nu_t + b_4 \omega_t.$$ $$b_1 = (1 + a_1(1 + d_2)); b_2 = \frac{a_2 - 1}{1 + a};$$ $$b_3 = (a_3(1 + d_2) - d_2); b_4 = \frac{1}{1 + a}$$ $$y_t = \frac{(1 + a_1(1 + d_2))u_t + (a_3(1 + d_2) - d_2)\nu_t + (1 + d_2)\omega_t}{(1 + a_1)(1 + d_2)}$$ $$+\frac{(aa_2+1)\epsilon_t}{1+a}$$. #### **Implications** - We see that output does not depend on μ and m_{t-1} - ullet We see that output depends on the a_i parameters . - These parameters capture the way monetary policy is conducted, i.e. m_t reacts to the occurrence of shocks. - This illustrates the Lucas critique: the impact of monetary policy depends on the way monetary policy is conducted. - Here we assume that the CB reacts directly to the occurrence of shocks. #### **Examples** - $a_1 < 0$: a positive demand shock leads to a restrictive monetary policy. This dampens the positive direct effect of u_t on y_t . - $a_2 = -\frac{1}{a} < 0 \rightarrow$ output is isolated from supply shocks and the impact on prices is amplified. - $a_2 = 1 > 0 \rightarrow b_2 = 0 \rightarrow$ no impact of supply shocks on prices and effect on y_t amplified . - $a_1 = \frac{-1}{1+d_2}$, $a_2 = 1$, $a_3 = \frac{d_2}{1+d_2} \rightarrow$ prices become independent from shocks. - the way the CB reacts to shocks has an impact on the effect of shocks on prices and output. ## Inflation expectations $$E_t \pi_{t+1} = \mu + (a_1 - b_1)u_t + (a_2 - b_2)\epsilon_t + (a_3 - b_3)\nu_t + (1 - b_4)\omega_t.$$ - The expected value of inflation depends on the average growth rate of the money stock. - on the shocks. - on the discrepancy between the parameters of the CB reaction function $(a_i$'s) and the structural parameters $(b_i$'s). ## Interest rate: equilibrium $$i_t = d_2(y_t - m_t + p_t + \nu_t).$$ $$i_t = \mu + \frac{d_2}{1 + d_2} (u_t - d_2 \nu_t).$$ - the equilibrium interest rate does not depend on ω_t . Why ? - The shocks to m_t are permanent; assume $\omega > 0 \Rightarrow p$ increases by $\frac{\omega}{1+a}$. - p also increases next period and surprise inflation increases y_t . - This requires an increase in real demand through a decrease in r_t . - i_t remains unchanged because r_t decreases and $E_t \pi_{t+1}$ increases. #### Interest rate: equilibrium - In the long run, we see that i_t depends on μ - ullet In the long run, $E_t\pi_{t+1}$ and π_t depend on μ . - The model is able to reproduce the impact of m_t in the short run : positive on output and prices. - The model is able to reproduce the impact of m_t in the long run run : no impact on output and positive on prices. ## **Interest rate policy** - What if i_t used as the MP instrument rather than m_t ? - This is the case today if we see the way MP is implemented → major shift observed in the beginning of the 80's (see chapter 4 for rationalization) - rewrite AS in terms of inflation rather than price level: $$y_t = E_{t-1}y_t + a(\pi_t - E_{t-1}\pi_t) + \epsilon_t$$ We can substitute Fisher equation in AD equation to get: $$y_t = E_t y_{t+1} - (i_t - E_t \pi_{t+1}) + u_t$$ • We can find the solution in terms of p_t and y_t from these two equations. #### **Interest rate policy** - The money demand equation is no longer necessary to find the solution → no role for money demand. Why? - When using interest rates, monetary authorities adjust i_t and m_t adjusts to find the money equilibrium (given y_t). - We need to assume a particular monetary rule using interest rate. To this aim, we choose the famous Taylor rule. #### **Taylor Rule** - describes the behaviour of the CB in terms of MP - **▶** Taylor has proposed the following values : $b_y = 0.5$ and $b_\pi = 1.5$. Implies a restrictive monetary policy when business cycle is relatively high and inflation relatively high. - This rule fits the data rather well: reproduces the dynamics of the prime rates decided by the Fed over the 15 previous years. - Example: Taylor #### **Solutions** • replace the implied value of i_t in the AD equation: $$y_t = \frac{E_t y_{t+1} - (b_\pi \pi_t - E_t \pi_{t+1}) + u_t}{1 + b_y}$$ - We assume $E_t y_{t+1} = 0 = E_{t-1} y_t$ - we can look for the values of π_t and y_t that equate AD and AS #### **Solutions** $$\pi_t = \frac{u_t - (1 + b_y)\epsilon_t}{a(1 + b_y) + b_\pi}.$$ $$y_t = \frac{au_t + b_\pi \epsilon_t}{a(1+b_y) + b_\pi}.$$ - The MP parameters once more play a role in determining the impact of MP → consistent with Lucas critique. - Role of shocks is emphasized - By constrast, no role for money demand shocks because these are fully absorbed by the interest rate policy → more on this in chapter 4.